

Large-scale structure and machine learning

A subjective review

Maciej Bilicki

Leiden University (the Netherlands), National Centre for Nuclear Research (Poland), & University of Zielona Góra (Poland)

ASTRONOMER

What my friends think I do

What my parents think I do

What society thinks I do

What the media thinks I do

What I think I do

What I actually do

What astronomers* really do

→ We search for, detect and study astronomical objects (planets, stars, galaxies...), as well as various "backgrounds" (radiation, neutrino, ...)

- We map the sky: surveys at different electromagnetic wavelengths
- → This is now done in (semi-)automatized way, including with instruments in space
- Data "reduction" (processing) is also getting automatized "pipelines"
- End users of a survey will often obtain
 a product such as a database of images,
 of spectra and/or a source catalog

^{*}This applies mostly to **observational astronomy** (unlike theoretical & computational)

Surveying the sky

- → Two main approaches in sky surveys:
 - 1) **Photometric**: **imaging the sky** at various wavelengths (visual, infrared, ultraviolet, radio, ...) Often "blindly" on previously uncharted areas
 - 2) **Spectroscopic**: measuring **electromagnetic spectra** (i.e. energy distribution) of objects Needs input from 1) to know where the sources are

Both 1) and 2) can be done repeatedly to look for **time variations**

- → The data are obtained using (often sophisticated) charge-coupled devices (CCDs) and stored in a digital form
- → Current datasets range from O(10³)
 to O(10⁹) sources; this keeps growing

Data avalanche in modern astronomy

- → Sloan Digital Sky Survey (since ~2000): 115 TB of data
- → Zwicky Transient Facility (start 2018) → 1 PB of imaging data, ~1 billion objects with time-domain information
- → Large Synoptic Survey Telescope, to start in ~2020, ten years of planned operation → 30 TB PER NIGHT
- → The Square Kilometer Array (the largest planned network of radio antennas, to start in 2020s) → ~4.6 Zettabytes

It is becoming unfeasible not only to process the data on the user's side, but even to store them or (soon) to transfer all of them from the instrument!*

* This is already the case for e.g. Gaia space telescope, where data is significantly filtered out onboard before being sent to Earth.

Data avalanche in astronomy: some challenges faced

Measuring distances to galaxies

- Galaxy distances are essential for cosmology and extragalactic astronomy
- → Known from the **redshift**: the farther galaxy is, the more its spectrum is shifted towards longer wavelengths due to the expansion of the Universe*
- → Redshift is measured using spectroscopy: at present ~3 million such measurements ("spectro-zs")
- → This may grow by ~1 order of magnitude in foreseeable future...
- → ...but in imaging surveys we have already detected O(10⁸) galaxies and this is likely to increase to even O(10¹⁰) in the coming decade(s)
- → It is highly unlikely to ever measure spectroscopic redshifts of most galaxies detected by the humanity (technological limitations)

Data avalanche in astronomy: some challenges faced

Classifying sources

- We want to separate astronomical sources into stars, galaxies, their subtypes, ...
 but also detect novel or unexpected objects
- → Most efficient by **combining imaging with spectroscopy** (point-like vs.

extended, characteristic spectral features,...)

- → The same **challenge to get spectra** for <u>most</u> of the already imaged objects as when measuring redshifts
- → Traditional approach without spectroscopy: use "colors" - ratios of fluxes at different wavelengths Different source types will occupy different regions in color-color spaces

 Today's surveys image the sky at many wavelengths at a time - human brain not very good at operating in >3D spaces (visualization and projection issues, ...)

Enter machine learning

- → Considered useful for astronomy since ~mid 1990s (e.g. Fayyad et al. 1993), gained on popularity in early 2000s (e.g. Wolf et al. 2001, Collister & Lahav 2004)
- → So far, mostly supervised learning: training set used to learn relations between feature space and searched pattern(s), then the algorithm applied to target set
- → Now also unsupervised learning, for instance to look for clusters in multi-dimensional feature space
- → Most used in astronomy: artificial neural networks, random forests, boosted decision trees, support vector machines... – usually applied on post-processed data (source catalogs, spectra...)

Recently also deep learning (convolutional neural networks), for instance applied

directly to **digital images** (i.e. pixels)

Possible applications:

- * redshift estimation
- * source classification
- * rare object search
- * data cleaning

*

Cosmological distances and the redshift

- Impossible to measure distances to galaxies with direct methods (e.g. parallax)
- Some galaxies have distance estimates via standard(ised) candles: distance ladder
- Generally, 3 coordinates of galaxies in catalogs: two angular ones and the redshift
- Redshift as a proxy for distance, via the Hubble law:

$$\mathbf{z} \approx \mathbf{H}_0 \times \mathbf{d} / \mathbf{c} \Rightarrow \mathbf{d} \approx \mathbf{4300} \mathbf{z} [\text{Mpc}] \text{ for } \mathbf{H}_0 = 70 \text{ km/s/Mpc}$$

- Redshift can be precisely measured only with spectroscopy
- Vast majority of already detected galaxies do not have spectroscopic redshifts

Galaxy distances from *photometric* redshifts

- Galaxy spectrum is shifted towards longer wavelengths due to the cosmological expansion
- Galaxies evolve with time, which is reflected in their spectra (gas is converted to stars, etc.)
- Therefore: fluxes of galaxies observed at different wavelengths change depending on galaxy redshift

- Redshifts can thus be estimated from multi-wavelength photometry:
 photometric redshifts ("photo-zs") for instance using machine-learning*
- Photo-zs much less precise (scatter of ~10% or more) than spectro-zs but usually statistically accurate (overall bias in |zphot-zspec|~0)

^{*}Photo-zs can also be estimated via spectral energy distribution (SED) fitting

⁻ workshop by Katarzyna Małek & Samuel Boissier next week

Photometric redshifts with machine learning

- Machine learning (ML) algorithms can be trained on spectro+photo data to derive best-fit photo-zs for a given set of passbands (regression problem)
- Feature space can include any quantities correlated with redshift: fluxes, sizes, colors...
- Plethora of algorithms applied: neural networks, random forests, support vector machines, Gaussian processes, ...
- ML photo-zs require representative spectroscopic calibration datasets (subsamples of the target photometric data) – usually the main limitation

A simple example of an artificial neural network scheme for photo-zs (ANNz, Collister & Lahav 2004)

Photo-zs in practice in the "local" Universe: 2MASS Photometric Redshift catalog (2MPZ)

- We cross-matched three all-sky photometric catalogs: 2MASS XSC (ground-based near-IR, J H K_s); WISE (space-based mid-IR, 3.4 μ m and 4.6 μ m) and SuperCOSMOS (digitised scans of photographic plates, B R I)
- We calculated **photometric redshifts** with an *artificial neural network* algorithm (Collister & Lahav 2004), trained on a representative spectroscopic subsample
- 2MPZ catalog with 1 million galaxies,
 (z)=0.08, covering most of the sky
- Some statistics of the photo-z estimates:
 - → 1-sigma scatter $\sigma_{\Delta z}$ = **0.015**
 - → median error $|\Delta z|/z = 13\%$
 - \rightarrow only 3% of outliers >3 $\sigma_{\Delta z}$
- 2MPZ is available for download from http://surveys.roe.ac.uk/ssa/TWOMPZ

2MASS Photometric Redshift catalog

1 million galaxies in 3D

Color-coded by photometric redshifts

Going deeper over 75% of sky:

20 million galaxies from WISE x SuperCOSMOS

- All-sky galaxy sample much deeper than 2MASS: Mid-IR WISE paired up with optical SuperCOSMOS, $R_{AB} < 19.5$, $[3.4\mu]_{Veqa} < 17$ mag
- Cross-match at |b|>10° gives 170 million sources, but mostly stars / blends
- A color-based clean-up of star blends leaves almost 20 million galaxies
- Separate work on automated selection of galaxies (Krakowski et al. 2016)

The largest "all-sky" ~3D sample

20 million galaxies from WISE x SuperCOSMOS

- WISE x SuperCOSMOS photo-z catalog: much deeper than 2MPZ
- Four photometric bands for photo-z's: optical B,R, infrared 3.4 & 4.6 μm
- Training set: **GAMA-II** spectroscopic (r < 19.8 in 3 equatorial fields; Liske et al. 2015)
- WIXSC has median z~0.2, but probes the LSS to z~0.4 on ~70% of sky

• Photo-z performance: $\sigma_{\Delta z} = 0.03$, median error 14% and 3% outliers

MB, Peacock, Jarrett, et al., ApJS, 2016

Data at http://ssa.roe.ac.uk/WISExSCOS

Kilo-Degree Survey (KiD5)

- New era in imaging surveys: excellent photometry at large depths and wide angles
 Kilo-Degree Survey, Dark Energy Survey, Hyper-SuprimeCam SSP
- KiDS: imaging of \sim 1500 deg² in *ugri* bands at depth $r\sim$ 24.9 (5 σ) with seeing<0.8" in the r band
- Data Release 3 includes ~50 million sources on ~450 deg² (full depth)
 (de Jong et al. 2017)

- Main science goal: cosmology with weak gravitational lensing but used for many other applications – unprecedented depth/coverage/seeing combination
- ullet KiDS area already covered with **VIKING** near-IR ${\it zyJHK}_{s}$ to a similar depth as ${\it ugri}$
- Next KiDS releases will include 9-band photometry (from DR4: over ~1000 deg²)
- Photometric redshifts crucial: most of KiDS galaxies do not have spectroscopy

KiDS machine-learning photo-zs **DR3 full-depth catalog**

- Machine-learning photo-zs derived with ANNz2 (Sadeh et al. 2016)
- Magnitude-space weighting of the training set implemented (Lima et al. 2008)
- KiDS DR3 public photo-z catalog for all the sources with 4-band ugri
- Photo-zs judged reliable to z_{phot} < 0.9 and r < 23.5

KiDS machine-learning photo-zs Public GAMA-depth DR3 catalog

- ANNz2 trained on GAMA equatorial+G23
- Used KiDS ugri magnitudes, colors, and semi-axes as parameters
- Limited to r < 20: ~800,000 galaxies in DR3
- Very **precise and accurate** photometric redshifts $(\sigma_{dz/(1+z)} = 0.02)$

Machine learning for astronomical source classification

→ ML algorithm learns to recognize different types of astronomical data (G); in the supervised case this is based on training examples

→ ML works in a parameter/feature space (p) based on discriminating

properties of the data

→ In astronomy, the parameter space is usually source fluxes at various wavelengths and related colors – but could also be redshifts, spectra or time-domain information

→ Popular algorithms: support vector machines (SVM), random forests, neural networks...

An example of astronomical big data: Wide-field Infrared Survey Explorer (WISE)

600 million sources within ~uniformity flux limits

The potential of

- Wide-field Infrared Survey Explorer (WISE) satellite data: all-sky photometric catalogue in 3.4, 4.6, 12 and 23 μm

- One of the largest all-sky samples: 750 million sources
 ...of which ~100 million are galaxies and QSOs
- WISE itself is much deeper than 2MASS (by ~3 mag): another "layer" for all-sky cosmology (galaxies even at z>1; e.g. Jarrett et al. 2017)
- Full **cosmological potential of WISE** still to be explored: galaxies very difficult to extract; stars dominate even at high latitudes
- **Difficulties in star/galaxy separation** due to blending (>6" resolution) and limited feature space (only 3.4 and 4.6 µm measurements at full depth)

Automated source classification with support vector machines

SVM: segregate data into categories based on training examples

- → Use kernel functions to map input data onto a higher-dimensional feature space
- → Find a hyperplane separating two classes in the feature space
- → Output source classes assigned based on their position relative to the boundary

Małek, Solarz and VIPERS team, 2013

Slide courtesy of Dr. Aleksandra Solarz

Machine learning for source classification: applications to (big) astronomical data

Recent examples (subjective selection):

- → First attempt at 3-class selection (star/galaxies/quasars) in the all-sky WISE dataset of over 300 million sources, using SVM (Kurcz et al. 2016)
- → SVM-based galaxy selection in WISE x SuperCOSMOS photometric data of
 ~50 million objects (Krakowski et al. 2016)
- Unsupervised classification of galaxies in the VIPERS dataset, using Fisher Expectation-Maximization algorithm (Siudek et al. 2018)
- → Quasar search in KiDS data using random forests (Nakoneczny et al. in prep.)²
- Many more various applications by different teams to numerous datasets

with support vector machines

- We used the SVM algorithm trained on SDSS x WISE spectroscopic sources (stars / galaxies / quasars)
- Current results for W1<16 Vega (1 mag brighter than WISE flux limit)
 due to limitations of the training set (practically no SDSS galaxies at W1>16)
- 45 million galaxy candidates on ~80% of sky

 Inevitable stellar contamination at low latitudes – blending due to 6" WISE beam

 Work in progress using refined methods and extended samples (Poliszczuk et al. in prep.)

Machine learning for rare object search: applications to (big) astronomical data

Two recent examples (subjective selection):

→ A One-Class-SVM algorithm to search for data anomalies different from the training; first application to all-sky WISE (Solarz et al. 2017)

→ A convolutional neural network application to imaging in Kilo-Degree Survey to search for strong gravitational lenses (Petrillo et al. 2017)

Novelty detection with One-Class Support Vector Machines

- → Create one 'known' class (sources with e.g. spectroscopic labels)
- → Map input data to a higher-dimensional parameter space
- → Define a hypersurface encapsulating the expected sources
- → Anything with 'unknown' patterns falls outside the hypersurface → Novelties

with machine learning

- Support vector machines were used in "one-class" mode: training set as "known" sources, the rest as "unknown" (anomalies)
- Training data derived from optical SDSS → detected anomalies have

specific WISE mid-IR colors

- An all-sky population of **very "red" objects** [3.4 μ]-[4.6 μ] > 0.8 mag Vega
- Properties consistent with highly obscured dusty quasars at (maybe) large redshifts
 - Spectroscopic follow-up needed to confirm their nature observations in Chile starting soon!

Solarz et al. 2017 27

The present and near future of wide-angle galaxy surveys

Some surveys happening now:

- * **SDSS** (currently stage IV): galaxies, quasars (spectroscopy)
- * Dark Energy Survey (**DES**): optical photometry on 5000 deg²
- * Kilo-Degree Survey (**KiDS**): precise optical and near-IR (**VIKING**) photometry on 1500 deg² (ESO)
- * Hyper Suprime-Cam SSP Survey: excellent optical and NIR photometry on 1400 deg² (Japan+Taiwan+Princeton)
- * and many, many others

Terabytes of data

Near and more remote future of wide-angle galaxy surveys

Planned surveys (examples):

- TAIPAN spectroscopy of ~2 mln. galaxies at z<0.4 (from 2018/19)
- Dark Energy Spectroscopic Experiment (**DESI**) spectroscopy of ~30 million galaxies (from 2018?)
- Square Kilometer Array (SKA) array of radiotelescopes in South Africa and Australia; millions of galaxies at (emitted) 21 cm wavelength (from ~2020s?; precursors already operating/built)
- Euclid European space-bourne near-IR telescope; slitless spectroscopy and deep photometry on ~1/4 of the sky; 2020s(?)
- Large Synoptic Survey Telescope (LSST) photometric survey on an 8.4-m telescope in Chile; ~40 billion(?) sources (~2020?)

Petabytes of data

Astronomers as big data specialists

- The sizes and complexity of future astronomical datasets will require more automatised approaches towards data analysis
- This is happening already now in some cases
- Machine learning tools will be essential
- "Standard" supervised learning now, but unsupervised I. as well as deep I. may (will?) take over
- ML for photo-zs well settled and new ideas being developed (e.g. derivation of probability density functions)
- ML for astronomical classification still in its infancy the best time to contribute significantly!