
  

Large-scale structureLarge-scale structure
and machine learningand machine learning

0

A subjective review

Maciej Bilicki
 Leiden University (the Netherlands),

National Centre for Nuclear Research (Poland),
& University of Zielona Góra (Poland)



  

2



  

What astronomers* really doWhat astronomers* really do
➔ We search for, detect and study astronomical objects (planets, stars, 

galaxies…), as well as various “backgrounds” (radiation, neutrino, ...)

➔ We map the sky: surveys at different 

electromagnetic wavelengths

➔ This is now done in (semi-)automatized 

way, including with instruments in space

➔ Data “reduction” (processing) is also 

getting automatized - “pipelines”

➔ End users of a survey will often obtain

a product such as a database of images, 

of spectra and/or a source catalog

3*This applies mostly to observational astronomy (unlike theoretical & computational)



  

Surveying the skySurveying the sky
➔ Two main approaches in sky surveys:

1) Photometric: imaging the sky at various

wavelengths (visual, infrared, ultraviolet, radio, …)

Often “blindly” on previously uncharted areas

2) Spectroscopic: measuring electromagnetic

spectra (i.e. energy distribution) of objects

Needs input from 1) to know where the sources are

Both 1) and 2) can be done repeatedly to

look for time variations

➔ The data are obtained using (often

sophisticated) charge-coupled devices

(CCDs) and stored in a digital form

➔ Current datasets range from O(103)

to O(109) sources; this keeps growing
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Data avalancheData avalanche
in modern astronomyin modern astronomy

Some examples:

➔ Sloan Digital Sky Survey (since ~2000): 115 TB of data

➔ Zwicky Transient Facility (start 2018) → 1 PB of imaging
data, ~1 billion objects with time-domain information

➔ Large Synoptic Survey Telescope, to start in ~2020,
ten years of planned operation →  30 TB PER NIGHT

➔ The Square Kilometer Array (the largest planned network
of radio antennas, to start in 2020s) → ~4.6 Zettabytes

It is becoming unfeasible not only to process the 
data on the user’s side, but even to store them or 

(soon) to transfer all of them from the instrument!*

* This is already the case for e.g. Gaia space telescope, where data is significantly filtered 
out onboard before being sent to Earth.

Numbers gathered by Dr. Aleksandra Solarz (NCBJ Warsaw)
5



  

Data avalanche in astronomy:Data avalanche in astronomy:
some challenges facedsome challenges faced

Measuring distances to galaxies

➔ Galaxy distances are essential for cosmology and extragalactic astronomy

➔ Known from the redshift: the farther galaxy is, the more its spectrum is 
shifted towards longer wavelengths due to the expansion of the Universe*

➔ Redshift is measured using spectroscopy: at present ~3 million such 
measurements (“spectro-zs”)

➔ This may grow by ~1 order of magnitude in foreseeable future…

➔ ...but in imaging surveys we have already detected O(108) galaxies and 
this is likely to increase to even O(1010) in the coming decade(s)

➔ It is highly unlikely to ever measure spectroscopic redshifts of most 
galaxies detected by the humanity (technological limitations)

6
*redshift z = λobserved / λemitted – 1; distance d: Hubble law: c z = H0 r



  

Classifying sources
➔ We want to separate astronomical sources into stars, galaxies, their subtypes, …

but also detect novel or unexpected objects

➔ Most efficient by combining imaging with spectroscopy (point-like vs. 

extended, characteristic spectral features,...)

➔ The same challenge to get spectra for most of the

already imaged objects as when measuring redshifts

➔ Traditional approach without spectroscopy: use

“colors” – ratios of fluxes at different wavelengths

Different source types will occupy different regions

in color-color spaces

➔ Today’s surveys image the sky at many wavelengths at a time – human brain 

not very good at operating in >3D spaces (visualization and projection issues, ...)

7

Data avalanche in astronomy:Data avalanche in astronomy:
some challenges facedsome challenges faced
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Enter machine learningEnter machine learning
➔ Considered useful for astronomy since ~mid 1990s (e.g. Fayyad et al. 1993),

gained on popularity in early 2000s (e.g. Wolf et al. 2001, Collister & Lahav 2004)

➔ So far, mostly supervised learning: training set used to learn relations between
feature space and searched pattern(s), then the algorithm applied to target set

➔ Now also unsupervised learning, for instance to look for clusters
in multi-dimensional feature space

➔ Most used in astronomy: artificial neural networks, random forests,
boosted decision trees, support vector machines… – usually applied on
post-processed data (source catalogs, spectra...)

➔ Recently also deep learning (convolutional neural networks), for instance applied 
directly to digital images (i.e. pixels)

➔ Possible applications:
* redshift estimation
* source classification
* rare object search
* data cleaning
* ….

8



  

● Impossible to measure distances to galaxies with direct methods (e.g. parallax)

● Some galaxies have distance estimates via standard(ised) candles: distance ladder

● Generally, 3 coordinates of galaxies in catalogs: two angular ones and the redshift

● Redshift as a proxy for distance, via the Hubble law:

z ≈ H
0
 ✕ d / c  ⇒  d ≈ 4300 z [Mpc] for H0=70 km/s/Mpc

● Redshift can be precisely measured only with spectroscopy 

● Vast majority of already detected galaxies do not have spectroscopic redshifts

Cosmological distancesCosmological distances
and the redshiftand the redshift

9



  

Galaxy distances Galaxy distances 
from from photometricphotometric redshifts redshifts

● Galaxy spectrum is shifted towards longer

wavelengths due to the cosmological expansion

● Farther galaxies are also on average seen as

fainter (observed flux ∝ distance-2)

● Galaxies evolve with time, which is reflected

in their spectra (gas is converted to stars, etc.)

● Therefore: fluxes of galaxies observed at different

wavelengths change depending on galaxy redshift

● Redshifts can thus be estimated from multi-wavelength photometry:

photometric redshifts (“photo-zs”) – for instance using machine-learning*

● Photo-zs much less precise (scatter of ~10% or more) than spectro-zs

but usually statistically accurate (overall bias in |zphot-zspec|~0)

*Photo-zs can also be estimated via spectral energy distribution (SED) fitting

– workshop by Katarzyna Małek & Samuel Boissier next week 10
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Photometric redshifts with machine learningPhotometric redshifts with machine learning

A simple example of an
artificial neural network 

scheme for photo-zs
(ANNz, Collister & Lahav 2004)

● Machine learning (ML) algorithms can be trained on spectro+photo data

to derive best-fit photo-zs for a given set of passbands (regression problem)

● Feature space can include any quantities correlated with redshift: fluxes, sizes, colors...

● Plethora of algorithms applied: neural networks, random forests, support vector 

machines, Gaussian processes, ...

● ML photo-zs require representative spectroscopic calibration datasets

(subsamples of the target photometric data) – usually the main limitation 

+ spec-z
11



  

Photo-zs in practice in the “local” Universe:Photo-zs in practice in the “local” Universe:

2MASS Photometric Redshift 2MASS Photometric Redshift catalog (2MPZ)catalog (2MPZ)
● We cross-matched three all-sky photometric catalogs:

2MASS XSC (ground-based near-IR, J H K
s
); WISE (space-based mid-IR, 3.4μm 

and 4.6μm) and SuperCOSMOS (digitised scans of photographic plates, B R I)

● We calculated photometric redshifts with an artificial neural network algorithm 

(Collister & Lahav 2004), trained on a representative spectroscopic subsample

● 2MPZ catalog with 1 million galaxies,

⟨z⟩=0.08, covering most of the sky

● Some statistics of the photo-z estimates:

→ 1-sigma scatter σΔz= 0.015

→ median error |Δz|/z = 13%

→ only 3% of outliers >3σΔz

● 2MPZ is available for download from

http://surveys.roe.ac.uk/ssa/TWOMPZ

MB, Jarrett, Peacock, Cluver & Steward, ApJS, 2014
12
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2MASS Photometric Redshift catalog2MASS Photometric Redshift catalog

1 million galaxies in 3D

Color-coded by photometric redshifts

13Plot by Tom Jarrett



  

Going deeper over 75% of sky:Going deeper over 75% of sky:

20 million galaxies from WISE x SuperCOSMOS20 million galaxies from WISE x SuperCOSMOS
● All-sky galaxy sample much deeper than 2MASS: 

Mid-IR WISE paired up with optical SuperCOSMOS, RAB<19.5, [3.4μ]Vega<17 mag 

● Cross-match at |b|>10° gives 170 million sources, but mostly stars / blends

● A color-based clean-up of star blends leaves almost 20 million galaxies

● Separate work on automated selection of galaxies (Krakowski et al. 2016)

MB, Peacock, Jarrett, et al., 2016



  

● WISE x SuperCOSMOS photo-z catalog: much deeper than 2MPZ

● Four photometric bands for photo-z's: optical B,R, infrared 3.4 & 4.6 μm

● Training set: GAMA-II spectroscopic (r<19.8 in 3 equatorial fields; Liske et al. 2015)

● WIxSC has median z~0.2, but probes the LSS to z~0.4 on ~70% of sky

● Photo-z performance: σΔz= 0.03,

median error 14% and 3% outliers

The largest “all-sky” ~The largest “all-sky” ~3D3D sample sample

20 million galaxies from WISE x SuperCOSMOS20 million galaxies from WISE x SuperCOSMOS

photo-z
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MB, Peacock, Jarrett, et al., ApJS, 2016
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Kilo-Degree Survey (KiDS )Kilo-Degree Survey (KiDS )
● New era in imaging surveys: excellent photometry at large depths and wide angles

   Kilo-Degree Survey, Dark Energy Survey, Hyper-SuprimeCam SSP

● KiDS: imaging of ~1500 deg2 in ugri

  bands at depth r~24.9 (5σ)

  with seeing<0.8” in the r band

● Data Release 3 includes ~50 million

  sources on ~450 deg2 (full depth)

  (de Jong et al. 2017)

● Main science goal: cosmology with weak gravitational lensing but used for               

  many other applications – unprecedented depth/coverage/seeing combination

● KiDS area already covered with VIKING near-IR zyJHK
s
 to a similar depth as ugri

● Next KiDS releases will include 9-band photometry (from DR4: over ~1000 deg2)

● Photometric redshifts crucial: most of KiDS galaxies do not have spectroscopy



  

KiDS machine-learning photo-zsKiDS machine-learning photo-zs
DR3 full-depth catalogDR3 full-depth catalog

● Machine-learning photo-zs derived with ANNz2 (Sadeh et al. 2016)

● Magnitude-space weighting of the training set implemented (Lima et al. 2008)

● KiDS DR3 public photo-z catalog for all the sources with 4-band ugri

● Photo-zs judged reliable to zphot< 0.9 and r < 23.5

MB, KiDS, GAMA & 2dFLenS teams, 2017
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KiDS machine-learning photo-zsKiDS machine-learning photo-zs
Public Public GAMA-depth DR3 catalogGAMA-depth DR3 catalog

● ANNz2 trained on GAMA equatorial+G23

● Used KiDS ugri magnitudes, colors, and semi-axes as parameters

● Limited to r < 20: ~800,000 galaxies in DR3

● Very precise and accurate photometric redshifts (σdz/(1+z)=0.02)

MB, KiDS, GAMA & 2dFLenS teams, 2017 18



  

Machine learningMachine learning
for astronomical source classificationfor astronomical source classification

    ➔ ML algorithm learns to recognize different types of astronomical data (G);

in the supervised case this is based on training examples

➔ ML works in a parameter/feature space (p) based on discriminating 

properties of the data

➔ In astronomy, the parameter

space is usually source fluxes

at various wavelengths and

related colors – but could

also be redshifts, spectra or 

time-domain information

➔ Popular algorithms: support

vector machines (SVM),

random forests, 

neural networks...
19Slide courtesy of Dr. Aleksandra Solarz



  

An example of astronomical big data:An example of astronomical big data:
Wide-field Infrared Survey ExplorerWide-field Infrared Survey Explorer

(WISE)(WISE)

20

600 million sources within ~uniformity flux limits



  

The potential of WISEThe potential of WISE

● Wide-field Infrared Survey Explorer (WISE) satellite data: 

all-sky photometric catalogue in 3.4, 4.6, 12 and 23 μm

● One of the largest all-sky samples: 750 million sources

...of which ~100 million are galaxies and QSOs 

● WISE itself is much deeper than 2MASS (by ~3 mag): another “layer”

for all-sky cosmology (galaxies even at z>1; e.g. Jarrett et al. 2017) 

● Full cosmological potential of WISE still to be explored: 

galaxies very difficult to extract; stars dominate even at high latitudes

● Difficulties in star/galaxy separation due to blending (>6” resolution) and 

limited feature space (only 3.4 and 4.6 μm measurements at full depth)

21



  

SVM: segregate data into categories based on training examples

➔ Use kernel functions to 
map input data onto a 
higher-dimensional 
feature space

➔ Find a hyperplane 
separating two classes 
in the feature space

➔ Output source classes 
assigned based on 
their position relative 
to the boundary

                         Małek, Solarz and VIPERS team, 2013

22

Automated source classificationAutomated source classification
with support vector machineswith support vector machines

Slide courtesy of Dr. Aleksandra Solarz



  

Machine learning for source classification:Machine learning for source classification:
applications to (big) astronomical dataapplications to (big) astronomical data

Recent examples (subjective selection):

➔ First attempt at 3-class selection (star/galaxies/quasars) in the all-sky WISE 

dataset of over 300 million sources, using SVM (Kurcz et al. 2016)

➔ SVM-based galaxy selection in WISE x SuperCOSMOS photometric data of 

~50 million objects (Krakowski et al. 2016)

➔ Unsupervised classification of galaxies

in the VIPERS dataset, using Fisher

Expectation-Maximization algorithm

(Siudek et al. 2018)

➔ Quasar search in KiDS data using

random forests (Nakoneczny et al. in prep.)

➔ Many more various applications by

different teams to numerous datasets 23



  

● We used the SVM algorithm trained on SDSS x WISE spectroscopic sources

  (stars / galaxies / quasars)

● Current results for W1<16 Vega (1 mag brighter than WISE flux limit)

  due to limitations of the training set (practically no SDSS galaxies at W1>16)

● 45 million galaxy candidates on ~80% of sky

● Inevitable stellar contamination

  at low latitudes – blending

  due to 6” WISE beam

●  Work in progress using

   refined methods and

   extended samples

   (Poliszczuk et al. in prep.)

source separationsource separation

with support vector machineswith support vector machines

Kurcz et al. 2016



  

Machine learning for rare object search:Machine learning for rare object search:
applications to (big) astronomical dataapplications to (big) astronomical data

Two recent examples (subjective selection):

➔ A One-Class-SVM algorithm to search for data anomalies different from the 

training; first application to all-sky WISE (Solarz et al. 2017)

➔ A convolutional neural network application to imaging in Kilo-Degree Survey to 

search for strong gravitational lenses (Petrillo et al. 2017)

25

0



  

Novelty detection with Novelty detection with 
One-Class Support Vector MachinesOne-Class Support Vector Machines

➔ Create one ‘known’ class (sources with e.g. spectroscopic labels)

➔ Map input data to a higher-dimensional parameter space

➔ Define a hypersurface encapsulating the expected sources

➔ Anything with ‘unknown’ patterns falls outside the hypersurface →  Novelties

0

The Principle:

26Slide courtesy of Dr. Aleksandra Solarz



  

Solarz et al. 2017

Rare object detection in Rare object detection in 

with machine learningwith machine learning

● Support vector machines were used in “one-class” mode:

  training set as “known” sources, the rest as “unknown” (anomalies)

● Training data derived from optical SDSS → detected anomalies have

  specific WISE mid-IR colors

● An all-sky population of very “red” objects     

   [3.4μ]-[4.6μ] > 0.8 mag Vega

● Properties consistent with highly obscured      

   dusty quasars at (maybe) large redshifts

● Spectroscopic follow-up needed to             

   confirm their nature – observations in Chile

   starting soon!
27



  

The present and near futureThe present and near future
of wide-angle galaxy surveysof wide-angle galaxy surveys

Some surveys happening now:

* SDSS (currently stage IV): galaxies, quasars (spectroscopy)

* Dark Energy Survey (DES): optical photometry on 5000 deg2

* Kilo-Degree Survey (KiDS): precise optical and near-IR (VIKING) 
photometry on 1500 deg2 (ESO)

* Hyper Suprime-Cam SSP Survey: excellent optical and NIR 
photometry on 1400 deg2 (Japan+Taiwan+Princeton)

* and many, many others

Terabytes of data

28



  

Near and more remote future of Near and more remote future of 
wide-angle galaxy surveyswide-angle galaxy surveys

Planned surveys (examples):

● TAIPAN – spectroscopy of ~2 mln. galaxies at z<0.4 (from 2018/19)

● Dark Energy Spectroscopic Experiment (DESI) – spectroscopy of 
~30 million galaxies (from 2018?)

● Square Kilometer Array (SKA) – array of radiotelescopes in South 
Africa and Australia; millions of galaxies at (emitted) 21 cm 
wavelength (from ~2020s?; precursors already operating/built)

● Euclid – European space-bourne near-IR telescope; slitless 
spectroscopy and deep photometry on ~1/4 of the sky; 2020s(?)

● Large Synoptic Survey Telescope (LSST) – photometric survey on an 
8.4-m telescope in Chile; ~40 billion(?) sources (~2020?)

Petabytes of data 29



  

Astronomers as big data specialistsAstronomers as big data specialists

● The sizes and complexity of future astronomical datasets will require 

more automatised approaches towards data analysis

● This is happening already now in some cases

● Machine learning tools will be essential

● “Standard” supervised  learning now, but unsupervised l. as well as 

deep l. may (will?) take over

● ML for photo-zs well settled and new ideas being developed (e.g. 

derivation of probability density functions)

● ML for astronomical classification still in its infancy – the best time to 

contribute significantly!

30
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