Searching for quasars in AllWISE data

Artem Poliszczuk National Centre for Nuclear Research

4th Cosmology School, Cracow, 2018

Unified AGN model

Figure: Unified AGN model. Credit: Zackrisson et al. 2005

Support Vector Machines (SVM)

Support Vector Machines classification algorithm (V. Vapnik 1995)

- supervised learning algorithm: need to give an example input with known labels. Tries to learn a rule that maps input to the labels
- higher performance then traditional learning algorithms
- powerful tool for solving classification problems

The SVM method

We are given a set **S** fo labeled training points:

$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_k, y_k)$$
 (1)

Each **training point** $\mathbf{x}_i \in \mathbb{R}^N$ belongs to either two classes and is given a **label** $\mathbf{y} \in \pm 1$ for $\mathbf{i} = \overline{1, k}$

Problem

In most cases we can't find a suitable hyperplane in an input space

Figure: Credit: www.dtreg.com

Mapping to a higher dimensions

Solution

Mapping the input space into a higher dimension feature space and searching the optimal hyperplane

Figure: Credit: www.dtreg.com

$$\phi: \mathbb{R}^N \longrightarrow Z \tag{2}$$

Example: 1D binary classification

Finding the optimal hyperplane

- For the liearly separable set - unique opitmal hyperplane with maximized margin
- Solution of the optimal hyperplane can be written as acombination of a few input points that are called support vectors
- New data points class assigned based on their position relative to the boundary

Figure: Credit: docs.opencv.org

AllWISE data

Wide-field Infrared Survey Explorer (WISE). NASA IR Satellite (launched in 2009) All Sky survey in four passbands:

- 3.3 μm (W1)
- 4.7 μm (W2)
- 12 μm (W3)
- 23 μm (W4)

AllWISE Catalog: 747 million objects.

Figure: Credit:www.nasa.gov

AllWISE-SDSS cross-match

- In order to obtain labeled data set one has to cross-match AllWISE catalog.
- Due to need for high statistics: SDSS DR14.
- Around 3 million objects (380 000 QSO).
- Selection effect.

Input parameter space

Parameters used in training: Kurcz et al. 2016.

- W1. W2
- Concentration = w1mag1-w1mag3

w1mag1 - 5.5" radius aperture magnitude

w1mag3 - 11.0" radius aperture magnitude

Binary classification: QSO(5k) vs. Rest(5k=2.5k stars + 2.5k galaxies)

Problematic distribution of final catalog

Figure: Generalization on AllWISE Data

Classification of validation set

Classification of AllWISExSDSS14 not used in the training. Completness: 94%, purity: 83%

Figure: Validation set

Using probability as additional feature

Probability based on the distance from decision surface can be used as additional feature in the secondary classification.

Using probability as additional feature. Results

Completness: $94\% \rightarrow 80\%$, purity: $83\% \rightarrow 97\%$

Figure: Second iteration with added probabilities

Summary

- Understanding the distribution problem.
- Satisfactory beginning results.
- A lot of things to test and improve.